Optimizing Synchronization Primitives

Zebediah Figura
Some Win32 sync primitives

- Kernel objects
 - Events (auto, manual)
 - Mutexes
 - Semaphores
 - Timers
 - Keyed events
 - Processes, threads, named pipes...

- In-process objects
 - Critical sections
 - SRW locks
 - Condition variables
 - `WaitOnAddress()` / `WakeByAddress()`
Lots of little quirks...

- `PulseEvent()`
- `Cross-process by name or DuplicateHandle()`
- `Wait-all`
- `Alertable waits`
- `NtQuery*()`
Kernel objects are slow

- wineserver round trip, because cross-process
- wineserver is single-threaded
- Many modern games are very multi-threaded
- Some work was already done
eventfd(2)

- Single 64-bit value, increment on `write(2)`, decrement on `read(2)`, blocks if zero
- We can sleep or check if signaled with `poll(2)`
- Events and mutexes are signaled if nonzero
- Semaphores use `EFD_SEMAPHORE`
- Extra state (mutex, semaphore) eventually needs shared memory
- APC waits just use another “event”
How did it turn out?

- Pretty good
- The kernel does all of the locking, so correctness isn’t too hard
- Wait-all is broken, but not in a way that matters
- `PulseEvent()` is also broken, but it doesn’t matter
But can it get faster?

- Well... maybe
- Kernel is doing all of the work, so esync is fast
- But system calls are expensive
 - But Windows has to do them too...
- Store event state locally
But can it get faster?

- Futexes don’t need a syscall to get/set state
- But we can’t wait on more than one
- ...unless we change the kernel
But can it go upstream?

• We can’t use shared memory
 – We need it for mutexes, semaphores, \texttt{NtQuery*()}, event optimizations

• \texttt{PulseEvent()} is broken

• Wait-all is kind of broken
But can it go upstream?

• Add the missing pieces in the kernel
 – Pros: simple, matches Windows
 – Cons: performance could be better, is this right for Linux?

• Use migration
 – Pros: avoids shared memory
 – Cons: very hard to get right

• Do scheduling in user space
 – Pros: `PulseEvent()` and wait-all can be correct, best performance?
 – Cons: Needs locking, is a bit tricky, APCs?