

WINE and HID

HID Devices and WINE

Presented 2015 WineConf
Vienna, Austria

By Aric Stewart

Presentation Goals

I would like to get you all generally
familiar with the HID architecture and
what I am trying to implement and why I
am taking the approach I have chosen

Someone here may actually be
interested enough to want to help and
this gives some good foundations.

Why work on this?

● Platform specific gamepad (joystick)
code duplicated in a variety of locations,
bring them all together to a common
place

– dinput, winmm

– xinput(future), rawinput(future)

● Improve performance and functionality
– mice in dinput

● Some applications work directly with HID
devices and hid.dll

What this is not

● Will not magically fix all joysticks
● Will not magically make the xbox 360

controller work
● Will not magically make xinput work
● Will (mostly) not be directly user visible

at all

Outline

● Hid Architecture
● Plug and Play
● Details on HID internals

– Platform Specific Details and Issues

– OS X

– Linux

● Ask Question at any time

Architecture Starting Points

● I am not a windows kernel developer
– But that is ok, this is not windows kernel

development

● The proposed HID architecture is 'Driver
Like'

– But we are not really a driver

● Native HID device drivers? Not likely...
– Why? It would be really neat...

HID User architecture

User Space programs can use HID.dll
in 2 ways.

● Call hid.dll APIs HidD_xxx and
HidP_xxx functions

● Directly send HID class IOCTLS to
the device

Either way the HID device is a system
device that is detectable via SetupAPI
and is expected to be able to be
Opened, Closed, Read and Written to.

Image courtesy of MSDN

HID 'Kernel' Stack

The HID device that the user mode
applications or dlls is accessing is
actually a class driver, or driver pair,
which represents the underlying
communications directly to the
hardware.

Image courtesy of MSDN

Device Stacks

Hidclass Device +
Minidriver Transport

(FDO)

Bus Device
(PDO)

FDO : Function Device,
Generally describes the
device that talks UP the
driver stack.

PDO: Physical Device,
Generally describes the
device that talks DOWN
the driver stack.

Image courtesy of MSDN

A 'device' is not simply a hardware thing plugged into the
system. A 'device' is an object , accessible via CreateFile
that response to various IOCTLs and hardware style API
calls. Most hardwares devices actually have long chains of
these objects called Device Stacks.

Don't be scared by the big MSDN Stacks:
Really all we care about is this:

Class Driver / Minidriver

Two sides of the same coin

● Class Drivers provide most of the
upper level facing interfaces

● Minidrivers are the transport drivers
● The minidriver access the physical

device and lower drivers in the chain

Minidriver calls a registration function in
the class driver on DriverEntry. The class
driver takes over many of the driver entry
points, such as handling IOCTLs, Reads,
Writes and AddDevice

Together they are the top level FDO for
the HID device's device stack.

Image courtesy of MSDN

WINE's HID architecture
The area in blue is our
pseudo-driver (FDO) area.

● We need the client facing
parts to be as exact to
windows as we can.
Devices, ioctls, etc...

● Our hidclass.sys and
minidrivers are living in
user mode

● Get to ignore 90% of the
complexities of windows
driver development

● Only 1 device, don't really
have a bus device or a
device stack as our PDO is
generally just a handle to
the native device

● Platform specific code all
goes in the minidriver
winehidminidriver.sys

Why no Windows Native Minidrivers?

● They expect kernel functions to exists
– Most of which are stubs at best

● They expect to communicate to, at best,
a bus device, or even directly to
hardware

● Require functional Plug and Play driver
detection loading and device creations
processes

● Cannot think of any seriously useful
examples or demand

Plug and Play
(The parts we care about)

● Bus Enumeration of devices
– On power-up do the insertion process

for every located device

● Driver locating and loading
● Hot plug insertion and removal of

devices
● Notifications up to the user level

– RegisterDeviceNotification

PnP on Windows

Image courtesy of “Programming the Microsoft Windows Driver Model”
By Walter Oney

● The bus device is responsible for
enumerating devices.

● When a new device is found a
message is sent to the PnP
Manager which locates a driver,
loads and initializes the driver, if
not already loaded

● Then the PnP Manager calls
AddDevice in the driver to setup
the device with the bus PDO.

● Finally IRP_MN_START_DEVICE
is sent

PnP Insertion / Removal

Image courtesy of MSDN

PnP in WINE

● We don't have anything really
– No bus drivers

– PlugPlay service is a stub

● Rough plug and play enumeration and
discovery implemented in hidclass and
the HID minidriver not cleanly separated

● Do we need more?
– It would be neat but really what do we

need?

HID / hidclass Internals

● Feel free to check out now if your
interest has been satisfied

● MSDN has a lot of good information
● Generally driver development books are

less helpful
● “Programming the Microsoft Windows

Driver Model” By Walter Oney has a
great chapter
(http://flylib.com/books/en/4.168.1.84/1/)

Technical Details

● The USB HID specification
● Devices and SetupAPI
● Partner Drivers / Minidrivers
● Wine details
● Platform details
● HID Clients

HID and USB

● HID devices are not required to be USB
● However the HID specification is tightly

coupled with the USB specification
● Non-USB devices fake USB information
● Constant values such as Usages and

Usage Pages all match the USB spec

USB and HID

● Given a device
– get device information (VendorID,

ProductID, Strings, etc...)

– get the report descriptor

– read and write reports to the device

● Turn HID Report Descriptors into
PHIDP_PREPARSED_DATA for the
HidP_XxX functions

● Read and write individual data elements
in a report

 Report Descriptors

 0x05, 0x01, // USAGE_PAGE (Generic Desktop)
 0x09, 0x05, // USAGE (Game Pad)
 0xa1, 0x01, // COLLECTION (Application)
 0xa1, 0x00, // COLLECTION (Physical)
 0x85, 0x01, // REPORT_ID (1)
 0x05, 0x09, // USAGE_PAGE (Button)
 0x19, 0x01, // USAGE_MINIMUM (Button 1)
 0x29, 0x10, // USAGE_MAXIMUM (Button 16)
 0x15, 0x00, // LOGICAL_MINIMUM (0)
 0x25, 0x01, // LOGICAL_MAXIMUM (1)
 0x95, 0x10, // REPORT_COUNT (16)
 0x75, 0x01, // REPORT_SIZE (1)
 0x81, 0x02, // INPUT (Data,Var,Abs)
 0x05, 0x01, // USAGE_PAGE (Generic Desktop)
 0x09, 0x30, // USAGE (X)
 0x09, 0x31, // USAGE (Y)
 0x09, 0x32, // USAGE (Z)
 0x09, 0x33, // USAGE (Rx)
 0x15, 0x81, // LOGICAL_MINIMUM (-127)
 0x25, 0x7f, // LOGICAL_MAXIMUM (127)
 0x75, 0x08, // REPORT_SIZE (8)
 0x95, 0x04, // REPORT_COUNT (4)
 0x81, 0x02, // INPUT (Data,Var,Abs)
 0xc0, // END_COLLECTION
 0xc0 // END_COLLECTION

● Input Reports, Output Reports and Feature Reports

● Used to generate the opaque PHIDP_PREPARSED_DATA structure used on the
HidP_XXX functions around processing reports.

● HidD_GetPhysicalDescriptor (IOCTL_GET_PHYSICAL_DESCRIPTOR)

HID Reports

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 Report ID (1)

Byte 1 Button 8 Button 7 Button 6 Button 5 Button 4 Button 3 Button 2 Button 1

Byte 2 Button
16

Button
15

Button
14

Button
13

Button
12

Button
11

Button
10

Button 9

Byte 3 Left Stick X Axis as Signed Char Integer (X)

Byte 4 Left Stick Y Axis as Signed Char Integer (Y)

Byte 5 Right Stick X Axis as Signed Char Integer (Z)

Byte 6 Right Stick Y Axis as Signed Char Integer (Rx)

● Input reports acquired by user client through ReadFile operations
● Input reports acquired by the hidclass from the minidriver using

IOCTL_HID_READ_REPORT or IOCTL_HID_GET_INPUT REPORT
● Output report and Function reports (leds, FF, etc..) sent by the user client through WriteFile

● To the user, reports are opaque data, individual controls are access using the hid.dll APIs
such as HidP_GetUsageValue, HidP_GetButtons, HidP_SetUsages, etc...

HID devices and SetupAPI

● &mi_ii or &ig_ii (Xinput compatible)
● SetupDiGetClassDevs and friends
● CreateFile
● What are 'Top Level Collections'?

– A multifunction device
(mouse/keyboard) may have more
than 1 top level collection

– Ends up appearing as 2 separate HID
devices

\?\HID#vid_vvvv&pid_pppp&mi_ii#aaaaaaaaaaaaaaaa#{4d1e55b2-f16f-11cf-88cb-001111000030}

The minidriver connection

● The hidclass.sys class driver is a library
present to make writing HID drivers
much simpler

● In DriverEntry calls the registration
function it replaces a lot of entry points

● Uses Internal IOCTLS to communicate

Windows Builtin Minidrivers

USB Hidusb.sys Win 2000+

Bluetooth Hidbth.sys Win Vista+

Bluetooth LE Hidbthle.sys Win 8+

I2C Hidi2c.sys Win 8+

General Purpose IO Hidinterrupt.sys Win 10+

GamePort Hidgame.sys Win Xp – WinVista

There are not a lot of minidrivers out there because Windows provides
quite a number of built-in mindrivers to cover most of the existing
common bus types on a system.

In Wine
● Just starting to get into Wine. Basic

structure approved by Alexandre
● Winehidminidriver.sys loaded all the

time at initialization as a system service
● Loads the appropriate bits for the

platform transport and handles all the
PnP enumeration and insertion logic

● Hidclass can support multiple mindriver
registrations in 1 instance

● Try to mostly support/preserve the
HidClass / Minidriver separation

In Wine...

● Theoretically other minidrivers could be
written.

● All platform specific code lives here

● PHIDP_PREPARSED_DATA generation
[proposed]

– IOCTL_WINE_HID_GET_PREPARSED_SIZE

– IOCTL_WINE_HID_GET_PREPARSED

OS X
● IOHIDxxx APIs give us just what we

want
● Direct access to ReportDescriptors and

Reports from the device
● Include access to keyboard and Mouse

devices.
● Mostly complete for Input Reports
● Output reports presently unimplemented
● Force Feedback is missing from

descriptors and will have to be built by
hand

Linux, hidraw

● My Linux knowledge is much more
limited...

● hidraw gives us direct access to
everything we want, Descriptors,
reports, read, write...

● It is considered internal and none of the
devices are given user access

● Xbox devices, and maybe others, do not
appear in hidraw

Linux, input

● No access to reports or descriptors,
would have to build all the connections
by hand

● No access to most of the underlying
device information; usb strings, serial
numbers, usages for device or elements

● Have to hand build Report Descriptors
and Reports

Hid Clients

● Raw Input
● Dinput / Xinput/ Winmm
● Of course, direct HID access from

Applications

RawInput

● Mostly lightly wrapped HID
● WM_INPUT messages
● RegisterRawInputDevices
● Need device discovery, access to the

messaging system

Dinput, Xinput, Winmm

● Dinput reported as the default windows
client for Joystick (0x1 0x4) and
GamePad devices (0x1 0x5) devices

● Having them all as HID clients
eliminates duplicated platform specific
code

● Hopefully clears the path for cleaner
implementations for xinput.dll

Want to help?

● Thanks for all the code review!
● Linux input developer

– The linux minidriver?

● The HID clients, RawInput, xinput etc...
● Comment? Questions? Suggestions?
● Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

